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Wave reflection in a Timoshenko beam is treated, using wave splitting and the imbedding
technique. The beam is assumed to be inhomogeneous and restrained by a viscoelastic
suspension. The viscoelasticity is characterized by constitutive relations that involve the
past history of deflection and rotation of the beam through memory functions of the
suspension. By applying wave splitting, the propagating fields are decomposed into left-
and right-moving parts. An integral representation of the split fields in impulse responses
is presented. This representation gives the reflected and transmitted fields as convolutions
of the incident field with the reflection and transmission kernels, respectively. The kernels
are independent of the incident field and depend only on the material properties. Invariant
imbedding is used to obtain equations for these kernels. In general, the kernels contain
discontinuities for which transport equations are derived and solved. Some numerical
solutions are presented for the reflection by a homogeneous beam suspended on two
separated, semi-infinite layers of continuously distributed, viscoelastically damped, local
acting springs.
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1. INTRODUCTION

Wave splitting, together with the invariant imbedding or the Green function technique,
has proved to be an effective method in solving a variety of direct and inverse scattering
problems. The formulation of wave splitting in conjunction with the imbedding concept
was first presented in references [1–3]. These papers considered scattering problems for
one-dimensional non-dispersive media, in which integro–differential equations for the
scattering kernels were obtained. Analysis of a dispersive equation was first performed by
Beezley and Krueger [4].

The bulk of the work on the imbedding approach for scattering problems are found in
electromagnetics [4–13]. Applications to elastic [14, 15], viscoelastic [16–18] and
fluid-saturated porous media [19] have been treated as well. Studies of the imbedding
equation in the three-dimensional case were performed by Weston [20, 21]. A general
overview of research in the area can be found in reference [22]. Also, reference [23] gives
a historical background to the application of invariant imbedding.

In this paper the imbedding technique is adopted for the Timoshenko beam equation
[24]. The beam is inhomogeneous and restrained by a layer of viscoelastic uncoupled
springs. Introducing the wave splitting concept, the reflection and transmission operators
relating the incident field to the reflected and transmitted fields, are presented. Wave
splitting of the fourth order Timoshenko equation was performed in reference [25]. The
scattering operators have integral representations, the kernels of which are obtained by
solving integro-differential equations. These are the reflection and transmission equations.
Transport equations are determined for the possible discontinuities of the respective
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kernels. Since wave propagation in the Timoshenko beam is characterized by two different
velocities, the shear and rod velocities, the behaviour of the possible discontinuities
demands careful analysis. In the literature, work which treat imbedding problems with
multiple wave speeds are sparse. In references [14, 19, 26] two different speeds of
propagation exist, while a somewhat generalized N-component system is studied in
references [27, 28].

In section 2 the equations of a viscoelastically restrained Timoshenko beam are
reviewed. The concept of wave splitting and travel time coordinate transformation are
introduced in section 3. The canonical representation and the manner in which it is
combined with the imbedding technique to obtain the reflection equation is treated in
sections 4 and 5, respectively. Transport equations for the discontinuities of the reflection
kernel are derived and solved in section 6. The corresponding equation and discontinuities
of the transmission kernel are derived in sections 7 and 8, respectively. In section 9 the
analysis is applied to the problem of a homogeneous beam suspended on two separated
layers of semi-infinite extension. Some numerical results for this particular case are
presented in section 10. The paper ends with two appendices, containing explicit
expressions of the transformation operators and a proof of independence needed for the
derivation of the imbedding equations.

2. THE TIMOSHENKO BEAM EQUATION

Consider a beam which has a region that is suspended on a viscoelastic bed (Figure 1).
This region may also have longitudinally varying material properties and will hereafter be
referred to as the region of inhomogeneity. The suspension is modelled by a layer of
continuously distributed, locally acting springs subjected to viscoelastic damping. The
length of the region of inhomogeneity is taken to be d. The beam is otherwise considered
homogeneous and unrestrained. According to Timoshenko [24], flexural motions of a
beam, including both rotary inertia and shear, are described by the following system of
coupled hyperbolic partial differential equations

(1/1z)( f1g)− k1u−K1 ( u= rA 12u/1t2,

1/1z( f2 1c/1z)+ f1g− k2c−K2 ( c= rI 12c/1t2, (2.1)

where u(z, t), c(z, t) and g (z, t) are the mean transverse deflection, the mean rotation and
the mean shear angle of the cross-section, respectively [29]. In the sequel, (2.1) is referred
to as the Timoshenko beam equation.

The main contribution to the elastic part of the external forces is modelled by spring
constants k1 and k2 restraining u(z, t) and c(z, t). The viscous part is modelled by
convolution of memory functions K1(t) and K2(t) with u(z, t) and c(z, t). Hence, the
viscous response of the suspension is influenced by the time history of mean deflection and

Figure 1. Inhomogeneous beam on viscoelastic suspension.



x2 Axis of vertical
displacement

z
Axis of
rotation

Neutral
axis

x2

x1

    611

Figure 2. Axis definitions.

mean rotation (2.1). Note that the memory functions also contribute to the elastic part
of the response.

I and A are the moment of inertia and the area of the cross-section, respectively, while
r is the density of the beam. Further, f1 defines the shear stiffness and f2 the bending
stiffness

f1 = k'GA, f2 =EI.

E is the modulus of elasticity and G is the shear modulus. These stiffnesses vary spatially
in an inhomogeneous section of the beam. Finally, k' is the shear coefficient which depends
on the dimensions of the cross-section and on Poisson’s ratio, corresponding to

n=(E−2G)/2G, 0E nQ 1
2.

The material of the beam is assumed incompressible with a non-negative Poisson’s ratio,
which imposes the limiting interval.

There are special cases of highly symmetric cross-sections, of which the shear coefficient
is dependent only on the Poisson ratio. Examples of such are circular, rectangular and
semicircular cross-sections. Also, thin-walled round and square tubes constitute such
special cases [29].

For the beam equation (2.1) to be valid with z-dependent material parameters, two
symmetry conditions on the longitudinal variation of the cross-section (Figure 2) must
be satisfied. First, the static moment must be symmetric with respect to the axis of rotation,
which makes the neutral axis well defined. Secondly, to exclude side bending, the
geometry of the cross-section must be symmetric with respect to the axis of vertical
displacement. I, A, E, G and k' may vary with the z co-ordinate, as long as these conditions
are respected.

If nothing else is stated, all fields in this paper are assumed quiescent at time tQ 0. Time
convolutions are denoted by an asterisk ((), i.e.,

( f( · ) ( g( · ))(t)=g
t

0

f(t− t')g(t') dt'.

The structure of the beam equation is conveniently exposed when writing the dynamics
as a system of equations

u u
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D is an integro-differential matrix operator, which is subdivided into three parts

D=D0 +D1 +D2.

D0 represents the dynamics of a free, homogeneous beam

0 1 1 0

0 0 0 1
G
G

G

K

k

G
G

G

L

l

D0 =
c−2

1 12
t 0 0 0

,

0 c−2
2 12

t −f1/f2 0

where the two velocities c1 (effective shear velocity) and c2 (rod velocity) are defined by

c1 =zk'G/r, c2 =zE/r,

and satisfy the inequality c1 Q c2. In conformity with the stiffnesses fi , the velocities are
allowed to vary continuously according to the previously mentioned symmetry restrictions.
For convenience, this z-dependence is suppressed in these expressions. Thus, all functions
containing fi and ci are implicitly z-dependent. D1 models the influence of the type of
external damping and restoring forces that are considered in this work
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where the operators x1 and x2 are

x1 = (1/f1)(k1 +K1 (), x2 = (1/f2)(k2 +K2 (). (2.3)

D2 depends on the spatial variance of the shear and bending stiffnesses and is given by

0 0 0 0

0 0 0 0
G
G

G

K

k

G
G

G

L

l

D2 =
0 0 −1z ln f1 0

.

0 0 0 −1z ln f2

The choice of dependent variables in this paper, {u, c, g, 1zc}, is the most natural one
from a physical point of view. This is because g and 1zc are proportional to the shear force
and the bending moment, respectively

g=Q/f1, 1zc=M/f2. (2.4)

This choice makes boundary values easy to express.

3. THE WAVE SPLITTING TRANSFORMATION

The purpose of the wave splitting transformation is to diagonalize the Timoshenko
equation of a free, homogeneous beam. At a fixed cross-section, the wave splitting
decomposes the wave fields of such a beam into pairs of uncoupled, right- and left-moving
waves: u+

1 , u+
2 and u−

1 , u−
2 . Inside a region of inhomogeneity these waves couple and the

interpretation of purely right- and left-moving fields is in general not valid. However, the
wave splitting transformation remains a suitable mathematical tool for studying scattering
by inhomogeneities.
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In reference [25], the wave splitting for the free, homogeneous Timoshenko beam was
derived with {u, c, 1zu, 1zc} as a choice of dependent variables. Since {u, c, g, 1zc} is the
choice in this paper the splitting is somewhat different, but the method and general results
remain the same [30].

3.1.      

The part of equation (2.2) that represents a free, homogeneous beam is

u u
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This set of equations is transformed by introducing a wave splitting operator P
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with formal inverse P−1
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The matrix operator P is chosen so as to diagonalize D0

L=PD0P−1 =diag(−l1, −l2, l1, l2). (3.4)

Since 1zP−1 =0 for a homogeneous beam, equation (3.1) is diagonalized
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The li s are the eigenoperators of D0, with the following representation

lif(t)= (1/ci ) 1f/1t+(Fi ( ·) ( f( · ))(t), i=1, 2.

The Fi (t) are convolution kernels (A.1) and f(t) is a general function in the domain of li .
The matrices P (A.3) and P−1 (A.4) are integro–differential operators. These results are
obtained by formally performing the diagonalization (3.4) in the Laplace domain. Note
that the Fi (t) are of exponential order 1/t, which causes the split fields to increase
exponentially with time [30].

In explicit form equation (3.5) reads

(1z 2 (1/ci ) 1t )u2
i (z, t)2 (Fi ( · ) ( u2

i (z, · ))(t)=0, i=1, 2. (3.6)

From equation (3.6), it is clear that the split fields satisfy a system of uncoupled one-way
wave equations. Therefore, these fields are independent of each other and propagate in
definite directions consistent with the choice of notation. That is, u+

1 is right-moving with
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the wave-front velocity c1 and u+
2 is right-moving with the wave-front velocity c2. The

left-moving counterparts are u−
1 and u−

2 . The terms left and right are here to be interpreted
as the positive and negative z directions, respectively. From the structure of P−1 (A.4),
it is obvious that the mean transverse displacement u(z, t) is the sum of the split fields

u(z, t)= u+
1 (z, t)+ u+

2 (z, t)+ u−
1 (z, t)+ u−

2 (z, t).

This decomposition is also valid for a restrained, inhomogeneous beam but then the
dynamics of the split fields is no longer diagonal.

3.2.      

Application of the wave splitting transformation (3.2) to equation (2.2) leads to
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where

L=PD0P−1, L=PD1P−1 +PD2P−1 −P(1zP−1). (3.8)

L represents the general coupling between the split fields in a restrained and/or
inhomogeneous beam. By introducing the following 2×2 submatrices of L and L

L=$−(C−1 1t +F ()
0

0
C−1 1t +F (%, L=$L11

L21

L12

L22%,
where

C=$c1

0
0
c2%, F=$F1(t)

0
0

F2(t)%,
the system of equations (3.7) is decomposed into coupled equations for the right- and
left-moving fields

(I 1z +C−1 1t )u+ =(L11 −F ()u+ +L12u−,

(I 1z −C−1 1t )u− =L21u+ +(L22 +F ()u−. (3.9)

The identity matrix is denoted I. These coupled equations are the dynamics of the right-
and left-moving vector fields u+(z, t) and u−(z, t), which are defined as

u+(z, t)=$u+
1

u+
2 %, u−(z, t)=$u−

1

u−
2 %.

L may contain both convolutional operators and multiplicative functions. Therefore the
following partition is introduced

Lij =Mij (z, ·) (+Nij (z). (3.10)

The elements of these are denoted

(Mij )kl =Mijkl , (Nij )kl =Nijkl .
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3.3.   - 

In order to simplify the numerical treatment, a travel time co-ordinate transformation
is introduced. The travel time of the faster wave front for traversing the longitudinal
extension d of the region of inhomogeneity is

l=g
d

0

dz'
c2(z')

. (3.11)

The corresponding travel time co-ordinate transformation is

x(z)=
1
l g

z

0

dz'
c2(z')

x$[0, 1], s=
t
l

s$[0, a).

The partial derivatives transform according to

1z =(dx/dz) 1x =(1/lc2) 1x , 1t =(ds/dt) 1s =(1/l) 1s .

Note that when c2 is constant l=d/c2 and x= z/lc2. For purposes that will become
apparent in section 4, the travel time of the slower wave front for traversing the distance
between the non-dimensional co-ordinates x1 and x2, 0E x1 E x2 E 1, is introduced as

t(x1, x2)=g
x2

x1

c2(x')
c1(x')

dx'. (3.12)

The non-dimensional split fields are

u2(x, s)'= (1/lc2)u2(z, t),

and the matrices of the dynamics, equations (3.9), are modified as

C'=
1
c2

C=$c1/c2

0
0
1%, F'= c2l2F, M'ij = c2l2Mij , N'ij = c2lNij −(1x ln c2 (x)) dij I.

Dropping the primes and using the partition (3.10), the transformed dynamics are

(I 1x +C−1 1s )u+ =N11u+ +N12u− +(M11 −F) ( u+ +M12 ( u−,

(I 1x −C−1 1s )u− =N21u+ +N22u− +M21 ( u+ +(M22 +F) ( u−. (3.13)

If nothing else is stated, non-dimensional convolutions are defined as

A ( u2 =(A(x, ·) ( u2(x, ·))(s)=g
s

0

A(x, s− s')u2(x, s') ds',

where A is a general convolution kernel.
It should be noted that there are other possible choices of co-ordinate transformations.

In the case of an infinite extension of the region of inhomogeneity, the travel time
co-ordinate transformation may be based on a finite part of the region. The normalizing
constant l might be changed to any convenient constant of dimension time, as is in fact
done in section 9.
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Figure 3. The scattering situation.

4. THE SCATTERING PROBLEM AND THE CANONICAL REPRESENTATION

In a completely homogeneous and free beam, there is no coupling between the split
fields. However, in an inhomogeneous beam region these fields couple and an incident field
scatters into a reflected field ur and a transmitted field ut (Figure 3). The scattered fields
are related to the incident field by reflection and transmission operators. Equations for
these operators can be deduced by combining the decomposed dynamics, equations (3.13),
with the canonical representation.

The canonical representation is an integral representation of the internal split fields
u2(y, s), expressed in terms of the field a(s) incident at x, and the impulse responses of
the inhomogeneous beam region (Figure 4). Consider system (3.13) in a subregion y$[x, 1]
of the full region of inhomogeneity [0, 1]. The only sources present are to the left of x.
Therefore a general excitation boundary condition is given at x and no left-moving field
exists at y=1

u+(x, s)= a(s), u−1(1, s)= 0. (4.1a, b)

If all initial conditions are homogeneous and a(s) is assumed quiescent at time sQ 0,
then

u2(y, s)= 0 [sQ y− x and [y$[x, 1]. (4.2)

Let the operator T(x; y) define a mapping from a general excitation a(s) at x (4.1) to
the corresponding solution u2(y, s) of the dynamics, equations (3.13),

a(s) ----#
T(x;y)

u2(a( · ), x; y, s).

By its definition, T(x; y) is a linear and time translation invariant operator. A consequence
of linearity is that

g
+a

−a

c(s')a(s'; s) ds' ----#
T(x;y) g

+a

−a

c(s')u2(a(s'; ·), x;y, s) ds',

where a(s'; s) and u2(a(s'; ·),x; y, s) denote excitations and corresponding solutions,
respectively, as functions of a parameter s'.

Figure 4. Internal fields generated by a general excitation.
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Introduce the canonical impulse responses U2
1,2(x; y, s)

d1,2(s) ----#
T(x;y)

u2(d1,2( · ), x; y, s)=U2
1,2(x; y, s),

where

d1(s)=$d(s)
0 %, d2(s)=$ 0

d(s)%,
are the canonical excitations. A general excitation is represented as an identity integral of
the canonical excitations

a(s)=g
+a

−a

(a1(s')d1(s− s')+ a2(s')d2(s− s')) ds'.

From time translation invariance it holds that

d1,2(s− s') ----#
T(x;y)

U2
1,2(x; y, s− s'),

and then by linearity

a(s) ----#
T(x;y) g

+a

−a

(a1(s')U2
1 (x; y, s− s')+ a2(s')U2

2 (x; y, s− s')) ds'.

Thus, the solution of a general excitation has the following integral representation in the
canonical impulse responses

u2(a( · ), x; y, s)=g
+a

−a $U
2
11(x; y, s− s')

U2
21(x; y, s− s')

U2
12(x; y, s− s')

U2
22(x; y, s− s')% a(s') ds'. (4.3)

This is the canonical representation. This statement is sometimes referred to as Borel’s
theorem [31]. It can also be obtained by adopting Duhamel’s principle [32].

In particular, the solution u2(y, s) corresponding to an excitation u+(x, s), satisfying the
dynamics in (x, s)$[0, y]× [0, a), has an important property. For fixed y$[0, 1], T(x; y)
for every x$[0, y] uniquely maps u+(x, s) to u2(y, s). Thus, u2(y, s) is independent of x and
the canonical representation simplifies to

u2(y, s)=g
+a

−a $U
2
11(x; y, s− s')

U2
21(x; y, s− s')

U2
12(x; y, s− s')

U2
22(x; y, s− s')%u+(x, s') ds'. (4.4)

4.1.    

The wave fronts of the impulse responses contain propagating distributions. An
excitation of d2(s) gives rise to a d-distribution in U+

22(x; y, s) on s= y− x. Furthermore,
d1(s) causes U+

11(x; y, s) to carry a d-distribution on s= t(x, y), which is the travel time
of the slower wave front for traversing the distance from x to y. This travel time is defined
in equation (3.12). All other responses resulting from impulse excitation contain jump
discontinuities at most. It is convenient to separate the propagating distributions from
U+

ii (x; y, s) according to

U+
11(x; y, s)= t+

1 (x, y)d(s− t(x, y))+U+
11(x; y, s)0,

U+
22(x; y, s)= t+

2 (x, y)d(s− y+ x)+U+
22(x; y, s)0, (4.5)
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Figure 5. The imbedding geometry.

where the superscript 0 refers to the regular parts of U11 and U22. Hence, the extracted terms
on the right contain no d-distributions. The functions t+

i (x, y) are the wave front factors.
These are determined by studying the step function responses V2

1,2(x; y, s)

H1,2(s) ----#
T(x;y)

u2(H1,2( · ), x; y, s)=V+
1,2(x; y, s),

where

H1(s)=$H(s)
0 %, H2(s)=$ 0

H(s)%,
are the modal step function excitations at x. Inserting these into equations (4.3) and
extracting distributions using equation (4.5), the transmitted part of the step function
responses reads

V+
1 (x; y, s)=$t+

1 (x, y)H(s− t(x, y))
0 %+g

s

y− x $U
+
11(x; y, s')0

U+
21(x; y, s')% ds'

V+
2 (x; y, s)=$ 0

t+
2 (x, y)H(s− y+ x)%+g

s

y− x $U+
12(x; y, s')

U+
22(x; y, s')0% ds'. (4.6)

It follows that the wave front factors t+
i (x, y) are

t+
1 (x, y)=V+

11(x; y, t+)−V+
11(x; y, t−), t+

2 (x, y)=V+
22(x; y, y+ − x), (4.7)

since V+
22(x; y, y− − x)=0 by causality. Thus, the wave front factors are the jump

discontinuities of V+
ii (x; y, s) across s= t(x, y) and s= y− x, respectively.

Equations for the wave front factors are obtained by inserting equations (4.7) into the
dynamics of the right-moving step function responses, i.e., the first expression in equations
(3.13). This results in

dt+
1 (x, y)/dy=N1111(y)t+

1 (x, y), dt+
2 (x, y)/dy=N1122(y)t+

2 (x, y). (4.8)

The solutions of these ordinary differential equations are

t+
1 (x, y)= efy

x
N1111(y')dy', t+

2 (x, y)= efy
x

N1122(y')dy', (4.9)

since, from equation (4.7),

lim
y:x+

t+
1 (x, y)= lim

y:x+
t+
2 (x, y)=1. (4.10)
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5. THE IMBEDDING EQUATION FOR THE REFLECTION KERNEL

In this section, the reflection equation is to be derived. The equation for the transmission
kernel is treated in section 7. Consider subregions [x, 1] of the full region of inhomogeneity
[0, 1] (Figure 5). With a fictitious, homogeneous continuation to the left of x, the scattering
problem of the full region is imbedded in a one-parameter family of scattering problems
for the subregions [x, 1]. The relation between the incident and reflected fields at x is
expressed by a temporal convolution. This result is obtained by setting y= x in the
left-moving part of the canonical representation (4.4). The relation is written

u−(x, s)=g
s

0

R(x, s− s')u+(x, s') ds'=R ( u+, (5.1)

where the causality of the integrands has been used. The time s is measured from when
the excitation u+(x, s) reaches x=0. R(x, s) is the reflection kernel of subregion [x, 1],
defined by

R(x, s)=$U−
11(x; x, s)

U−
21(x; x, s)

U−
12(x; x, s)

U−
22(x; x, s)%.

Since the canonical excitations are in the right-moving field and all parameters vary
continuously, there are no singular distributions in the left-moving part of the impulse
responses. Hence, the reflection kernel at most contains discontinuities. The physical
reflection kernel of the full region of inhomogeneity is R(0, s).

By inserting the representation (5.1) into the second equation of (3.13), u− is eliminated
according to

(I 1x −C−1 1s )R ( u+ =N21u+ +N22R ( u+ +M21 ( u+ +(M22 +F) ( R ( u+. (5.2)

For a general region of inhomogeneity, the elements of the reflection kernel may contain
jump discontinuities, which present themselves when evaluating the derivatives on the left
hand side of equation (5.2). These discontinuities may exist across curves s= di (x), which
are yet to be determined. Discontinuities are denoted

[R]i =R(x, d+
i )−R(x, d−

i ).

The time derivative of the temporal convolution is

1s (R ( u+)= 1sR ( u+ + s
n

i=0

[R]iu+(x, s− di ),

and, by using the dynamics for u+, the spatial derivative is

1x (R ( u+)= 1xR ( u+ − 1sRC−1 ( u+ +R ( (M11 −F) ( u+ +R ( M12 ( R ( u+

+R ( N11u+ +R ( N12R ( u+ − s
n

i=0

(d'i (x)[R]i +[R]iC−1)u+(x, s− di ).

Inserting the above relations into equation (5.2) results in an equation consisting of a
convolution with u+ and contributions from the curves of discontinuity. By a proof of
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independence, given in Appendix B, these two parts must vanish separately. This results
in an equation for the possible curves of discontinuities, using the Kronecker delta,

d'i (x)[R]i +[R]iC−1 +C−1[R]i + di0N21 =0, (5.3)

along with an equation for the reflection kernel, the R-equation,

1xR−C−1 1sR− 1sRC−1 =M21 +N22R−RN11 +F ( R+R ( F

+M22 ( R−R ( M11 −RN12 ( R−R ( M12 ( R. (5.4)

This is an equation for the left-moving impulse responses evaluated at x. It is related to
a type of Riccatti equation in the Laplace transform domain [33].

As an alternative to the proof of independence, one might invoke the uniqueness of
homogeneous Volterra integral equations of the second kind in conjunction with the
fundamental lemma of the calculus of variations.

6. THE DISCONTINUITIES OF THE REFLECTION KERNEL

As is expected from an equation of the type (5.4), it follows from equation (5.3) that
the possible discontinuities in R are across d0 =0 in all elements (the initial values) and
across certain characteristics of the respective elements. The initial values follow directly

[R11]0 =R11(x, 0+)=−1
2(c1/c2)N2111(x), [R12]0 =R12(x, 0+)=−[c1/(c1 + c2)]N2112(x),

[R21]0 =R21(x, 0+)=−[c1/(c1 + c2)]N2121(x), [R22]0 =R22(x, 0+)=−1
2N2122(x),

(6.1)

while equation (5.3) only states that the elements might have discontinuities across their
respective characteristics di (x) starting from (x, s)= (1, 0). These are (Figure 6)

[R22] across d1(x)=2(1− x),

[R21], [R12] across d2(x)=g
1

x 01+
c2(x')
c1(x')1 dx',

[R11] across d3(x)=2 g
1

x

c2(x')
c1(x')

dx'.

The transport equations for these discontinuities can be derived from the R-equation itself
and consistency requirements on the jumps in R.

Figure 6. The relevant characteristics.
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The discontinuities of the reflection kernel must be consistent with causality and the
representation. Since

R(1, s)=0 [sq 0 (from (5.1)), R(1, 0−)=0 (by causality),

then, when x:1, the sum of the jumps in Rmn over all of its discontinuities must equal
zero. Therefore

[R11]0=x=1 + [R11]3=x=1 =0, [R12]0=x=1 + [R12]2=x=1 =0,

[R21]0=x=1 + [R21]2=x=1 =0, [R22]0=x=1 + [R22]1=x=1 =0, (6.2)

which, since the initial values are known from (6.1), gives the boundary values for the
jumps across the respective characteristics.

The terms that generate the discontinuities are those resulting from the multiplicative
parts in the right side of equation (5.4). Taken into consideration the fact that the
discontinuities in different elements exist across different characteristics, the following
transport equations result from equation (5.4)

(d/dx)[R11]3 = (N2211(x)−N1111(x))[R11]3, (d/dx)[R12]2 = (N2211(x)−N1122(x))[R12]2,

(d/dx)[R21]2 = (N2222(x)−N1111(x))[R21]2, (d/dx)[R22]1 = (N2222(x)−N1122(x))[R22]1.

Together with equation (6.2), the solutions to the transport equations are

[R11]3 =−R11(1, 0+) ef1
x (N1111(x')−N2211(x'))dx', [R12]2 =−R12(1, 0+) ef1

x (N1122(x')−N2211(x'))dx'

[R21]2=−R21(1, 0+) ef1
x (N1111(x')−N2222(x'))dx', [R22]1=−R22(1, 0+) ef1

x (N1122(x')−N2222(x'))dx'.

(6.3)

In the case of a homogeneous beam resting on a viscoelastic layer, Nij =0. This implies,
by equation (6.1), that all initial values are zero. From equation (6.3) it is seen that this
causes the discontinuities to vanish. Thus, the reflection kernel R is in that case continuous
throughout its domain.

7. THE IMBEDDING EQUATION FOR THE TRANSMISSION KERNEL

In this section the equation for the transmission kernel is derived. The incident field
u+(x, s) is related to the transmitted field u+(1, s) (Figure 5). By evaluating the canonical
representation (4.4) at y=1 and extracting distributions (4.5), the relation is

u+(1, s+1− x)= t+(x, 1)$u+
1 (x, q)

u+
2 (x, s)%+ t+(x, 1)T ( u+. (7.1)

The time s is measured from the arrival of the fast wave front at the back end (y=1).
The time variable q is introduced

q= s− t(x, 1)+1− x, (7.2)

and measures the time from the arrival of the slow wave front at the back end of the region
of inhomogeneity. The wave front factors are collected in a diagonal matrix

t+(x, y)=diag (t+
1 (x, y), t+

2 (x, y)). (7.3)



. . .   . . 622

The first part of equation (7.1) is the effect of direct transmission of the incident field with
attenuation and time delay. The second part is due to scattering effects in the region of
inhomogeneity. T(x, s) is the transmission kernel of subregion [x, 1] and is defined by the
inverse of the wave front matrix (7.3) multiplying the right-moving, regular parts of the
canonical impulse responses evaluated at y=1

T(x, s)= (t+(x, 1))−1$U+
11(x; 1, s+1− x)0

U+
21(x; 1, s+1− x)

U+
12(x; 1, s+1− x)

U+
22(x; 1, s+1− x)0%. (7.4)

Since all parameters vary continuously and the singular distributions have been extracted,
the elements of the transmission kernel contain discontinuities at most. The physical
transmission kernel of the full region of inhomogeneity is T(0, s).

In order to eliminate the transmitted field from equation (7.1), let the operator I (1x + 1s )
act on the representation (7.1) and utilize the fact that the wave front factors are
exponential functions. This results in

0=0I(1x + 1s )−$N1111

0
0

N1122%10$u+
1 (x, q)

u+
2 (x, s)%+T ( u+1. (7.5)

The action of the operator on the remaining terms in equation (7.5) must be given a closer
examination.

Substitution of the reflection kernel u− =R ( u+ into the dynamics of the right moving
field gives

(I 1x +C−1 1s )u+ =N11u+ +N12R ( u+ +(M11 −F) ( u+ +M12 ( R ( u+. (7.6)

Also, since 1xt(x, 1)=−c2/c1, it follows that

(1x + 1s )u+
1 ( p= x, q= s− t(x, 1)+1− x)= (1p +(c2/c1) 1q )u+

1 (p, q).

Considering the upper and lower equations of (7.6) separately, results in

I(1x + 1s )$u+
1 ( p, q)

0 %=$10 0
0%N11u+(x, q)+$10 0

0%(D(x, ·) ( u+(x, ·))(q), (7.7)

I(1x + 1s )$ 0
u+

2 (x, s)%=$00 0
1%N11u+(x, s)+$00 0

1%D ( u+, (7.8)

where

D=M11 −F+M12 ( R+N12R.

Upon substituting equations (7.7) and (7.8) into equation (7.5), it follows that

0=0I(1x + 1s )−$N1111

0
0

N1122%1T ( u+ +$ 0
N1121

N1112

0 %$u+
1 (x, s)

u+
2 (x, q)%+B ( u+, (7.9)

with

B=$D11(x, q)
D21(x, s)

D12(x, q)
D22(x, s)%.
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Note the delayed time variable in the upper row.
For a general region of inhomogeneity, the elements of the transmission kernel may

contain jump discontinuities, which present themselves when evaluating the derivatives
operating on the temporal convolution in the right side of equation (7.9). These
discontinuities may exist across curves s= di (x), which are yet to be determined.
Discontinuities are denoted in the same manner as in section 5. The time derivative of the
temporal convolution in equation (7.9) is

1s (T ( u+)= 1sT ( u+ + s
n

i=0

[T]iu+(x, s− di ),

and, by using the dynamics for u+, the corresponding spatial derivative is

1x (T ( u+)= 1xT ( u+ − 1sTC−1 ( u+ +T ( (M11 −F) ( u+ +T ( M12 ( R ( u+

+TN11 ( u+ +T ( N12R ( u+ − s
n

i=0

(d'i (x)[T]i +[T]iC−1)u+(x, s− di ).

Inserting the relations for the partial derivatives into equation (7.9) results in an equation
that consists of convolutions with u+ and contributions from the curves of discontinuity.
By the proof of independence (Appendix B), these parts must vanish separately. This
results in an equation for the transmission kernel, the T-equation

1xT−0c2

c1
−111s$T11

T21

0
0%=$N1111

0
0

N1122%T−TN11 −B

−T ( M11 +T ( F−T ( M12 ( R−T ( N12R, (7.10)

and an equation for the possible curves of discontinuity

(1− d'i (x))[T]i −[T]iC−1 +0 0
di0N1121

di1N1112

0 1=0. (7.11)

Two of the curves of discontinuity are known a priori (see Figure 7)

d0(x)=0, d1(x)= t(x, 1)−1+ x, (7.12)

and are represented by Kronecker deltas in equation (7.11). This follows from the analysis
of the action of the partial derivatives and from the contribution of the non-convolutional
term in equation (7.9).

Figure 7. The relevant characteristics.
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8. THE DISCONTINUITIES OF THE TRANSMISSION KERNEL

Analysis of equation (7.11) reveals no other curves of discontinuity than those of
equation (7.12). It follows that all elements except T11 may have jump discontinuities across
d0 =0 (the initial values), although only one of them is determined directly from equation
(7.11):

[T11]0 =T11(x, 0+)=0, [T12]0 =T12(x, 0+):undetermined,

[T21]0 =T21(x, 0+)= [c1/(c2 − c1)]N1121, [T22]0 =T22(x, 0+):undetermined. (8.1)

Likewise, all elements but T22 may have jump discontinuities across d1(x) and it is only
the jump of T12 that is determined directly:

[T11]1:undetermined, [T12]1 = [c1/(c1 − c2)]N1112,

[T21]1:undetermined, [T22]1 =0. (8.2)

The transport equations for the undetermined jump discontinuities can be derived from
the transmission equation and consistency requirements on the jump discontinuities. For
the elements of the transmission kernel containing multiple discontinuities, the jumps must
be consistent with causality and the representation. Since

T(1, s)=0 [sq 0 (from (7.1)), T(1, 0−)=0 (by causality),

the sum of the jumps in T12 and T21 over all their respective jumps must equal zero as x:1.
Therefore

[T12]0=x=1 + [T12]1=x=1 =0, [T21]0=x=1 + [T21]1=x=1 =0. (8.3)

By equation (8.3) and the jumps known from equation (8.1) and (8.2), the initial values
of the transport equations result:

[T11]1=x=1 =0, [T12]0=x=1 =
c1(1)

[c2(1)− c1(1)]
N1112(1),

[T21]1=x=1 =
c1(1)

[c1(1)− c2 (1)]
N1121(1), [T22]0=x=1 =0. (8.4)

Since all convolutions in the transmission equation are continuous, the terms that
generate the discontinuities are the multiplicative parts in the right side of equation (7.10).
The following transport equations for the remaining jump discontinuities follow:

d
dx

[T11]1 =F1(0+)−M1111(x, 0+)+
c1

c2 − c1
N1112N1121 +

c1

2c2
N1211N2111

+
c1

c1 + c2
N1212N2121,
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d
dx

[T12]0 = (N1111 −N1122)[T12]0,
d
dx

[T21]1 = (N1122 −N1111)[T21]1,

d
dx

[T22]0 =F2(0+)−M1122(x, 0+)−
c1

c2 − c1
N1112N1121 + 1

2N1222N2122

+
c1

c1 + c2
N1221N2112,

Note that the initial values of Rij (x, 0+) enter the transport equations by the matrix
elements N21ij . With the initial values given in equation (8.4) the solutions to the transport
equations are

[T11]1 =−g
1

x 0F1(0+)−M1111(x', 0+)+
c1(x')

c2(x')− c1(x')
N1112(x')N1121(x')

+
c1(x')
2c2(x')

N1211(x')N2111(x')+
c1(x')

c1(x')+ c2(x')
N1212(x')N2121(x'))1 dx',

[T12]0 =
c1(1)

c2(1)− c1(1)
N1112(1) ef1

x (N1122(x')−N1111(x'))dx',

[T21]1 =
c1(1)

c1(1)− c2(1)
N1121(1) ef1

x (N1111(x')−N1122(x'))dx',

[T22]0 =−g
1

x 0F2(0+)−M1122(x', 0+)−
c1(x')

c2(x')− c1(x')
N1112(x')N1121(x')

+ 1
2N1222(x')N2122(x')+

c1(x')
c1(x')+ c2(x')

N1221(x')N2112(x')1 dx'. (8.5)

Together with the jumps already determined

[T12]1 = [c1/(c1 − c2)]N1112, [T21]0 = [c1 /(c2 − c1)]N1121,

this completes the description of the discontinuities.

9. VISCOELASTIC DAMPING OF AN INFINITE BEAM

This section considers a homogeneous beam, suspended on a layer of semi-infinite
extension. The results obtained in the preceding sections are duly modified and explicit
expressions of the pertinent operators are presented, whereupon the corresponding
imbedding equation is derived. Since the beam is homogeneous, the spatial dependence
of the material parameters vanishes. Hence, the operator L defined in equation (3.8)
reduces to

L=PD1P−1.

L is calculated by means of Laplace transform techniques. The results reveal that none
of its matrix elements contain purely multiplicative terms, so the partition given in
equation (3.10) simplifies to

Lij =Mij ( · ) ( .
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Introducing the matrices

A1 =$ A11

−A12

A11

−A12%, A2 =$−A21

A21

−A22

A22 %,
the convolution operators can be structured as

M11 = x1A1 + x2A2, M12 = x1A1 − x2A2,

M21 = − x1A1 + x2A2, M22 = − x1A1 − x2A2,
(9.1)

The operators xi are defined in equation (23). It is convenient to express the elements Aij

in terms of the function Q and its derivative 1tQ. Let

Aij = aij 1tQ+ bij ( Q, (9.2)

where the constants aij and the functions bij (t) are defined as

a11 = (c2
1 − c2

2 )/c1c2
2 , a12 = a21 =0, a22 = (c2

1 − c2
2 )/c2

1c2,

b11 = (c1/c2)(1tS/c2 +F2 +S ( F2)−F1, b12 = (c1/c2)(1tS/c1 +F1 +S ( F1)−F2,

b21 =0 c2
1

c2
2r2

0
−

1
2r0c2t101tU

c1
+F1 ( U1−

1
c1

1tU ( V−F1 ( U ( V,

b22 =01
r2

0
+

1
2r0c2t101tU

c2
+F2 ( U1+

1
c2

1tU ( V+F2 ( U ( V+01−
c2

2

c2
11F2. ( 9.3)

The functions appearing in equations (9.2) and (9.3) are presented in Appendix A.
This far, no transformations to non-dimensional variables have been performed. Due

to the infinite extension of the layer of springs, it is convenient to utilize the characteristic
time t (A.2) instead of the constant l according to equation (3.11). The non-dimensional
co-ordinates are written

s= t/t, x= z/c2t.

Thus, all equations in section 3.3 remain unaffected, except that the parameter t takes the
place of l. Concerning the reflection kernel, the spatial invariance of the material
parameters and the semi-infinite extension of the layer causes the kernel to vary only with
time, R(s). This turns the non-dimensional imbedding equation (5.4) into

−C−1 1sR− 1sRC−1 =M21 +F ( R+R ( F+M22 ( R−R ( M11 −R ( M12 ( R. (9.4)

As is argued in section 6 the reflection kernel is continuous. The relations given in equation
(9.1) are written in non-dimensional form by introducing the relations

k'1 = (c2
2t

2/f1)k1, K'1 = (c2
2t

3/f1)K1, k'2 = (c2
2t

2/f2)k2, K'2 = (c2
2t

3/f2)K2.

The operators xi and the elements Aij are hereby modified as

k'i +K'i (= x'i = c2
2t

2xi , A'ij =(1/c2)Aij .

10. NUMERICAL EXAMPLES

In order to study the influence of a semi-infinite layer by means of the imbedding
technique, some numerical examples are given below. The reflection kernel R which maps
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the right-moving field to the left-moving field, is obtained by solving equation (9.4). Due
to the derivatives at the left side, the equation calls for an integration with respect to time.
This integration, as well as the convolutions, is performed by means of the trapezoidal rule

g
(i+1)h

ih

A(s') ds'1 h
2

(A((i+1)h)+A(ih))

(A( · ) ( B( · ))(ih)1 h
2 0A(ih)B(0)+A(0)B(ih)+2 s

i−1

j=1

A( jh)B((i− j)h)1.
Denote

R(ih)=Ri , Mkl (ih)=Mkl,i .

By collecting terms that contain Ri+1 on the left side, the discretized imbedding equation
is written

Ri+1C−1 +C−1Ri+1 + (h2/4)(Ri+1(F0 −M11,0)+ (F0 −M11,0)Ri+1)

=RiC−1 +C−1Ri +
h
2

(M12,i+1 +M12,i )+
h2

4
(Ri (−F0 +M11,0)+ (−F0 +M11,0)Ri )

+
2h2

4 0 s
i

j=1

Rj (−Fi− j+1 +M11,i− j+1)+ s
i−1

j=1

Rj (−Fi− j +M11,i− j )1
+

2h2

4 0 s
i

j=1

(−Fi− j+1 +M11,i− j+1)Rj + s
i−1

j=1

(−Fi− j +M11,i− j )Rj1
+

2h3

8 0 s
i

j=1

Ri− j+1(M12,0Rj +2 s
j−1

k=1

M12,kRj− k )

+ s
i−1

j=1

Ri− j (M12,0Rj +2 s
j−1

k=1

M12,kRj− k )1.
Here, the symmetry properties of the convolution operators Mkl given in equation (9.1)
and the homogeneous initial conditions of the reflection kernel have been used. Given a
proper set of external damping properties ki and Ki (s), it is straightforward to determine
iteratively R(ih) i=0, 1, . . . , n by using equation (10.1).

Consider a homogeneous infinite beam, suspended on semi-infinite layers of springs
(Figure 8). The centre of the beam is subjected to a pulse in the shear force, Q0(s), localized
at x=0. Due to the symmetry of the problem, it suffices to examine the semi-infinite part
of the beam extending along the positive x-co-ordinate. Hence, the boundary conditions
are Q(0, s)=−Q0(s)/2 and c(0, s)=0. This problem is treated in [30] in the case of a
free beam. Consequently, the determination of the split fields at the boundary follows
directly from [30]. In short, this is accomplished by expressing the shear force Q in terms
of the shear angle g, (2.4), and performing the transformation of variables according to
equation (3.2), knowing that no left-moving waves originate from the boundary. The split
fields at a cross-section along the free beam may be derived by using the Green function
method, see [30]. Adopting the Green function technique on the right-moving waves, the
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Figure 8. The geometry of the problem.

reflected field at the intersection of free and layered beam is obtained according to equation
(5.1). Eventually, the physical fields are given by applying the inverse transformation (3.3).

In the following example, the shear force is a rectangular pulse of duration Ds=1 and
amplitude Q0. The beginning of the right layer is located at x=1. Consider three different
cases, in which the functions describing the layer properties are prescribed as

I: k1 = k2 =0, K1(s)=K2(s)=0,

II: k1 = k2 =20, K1(s)=K2(s)=0,

III: k1 = k2 =20, K1(s)=K2(s)=−20 e−s.

These correspond to vanishing, elastic and viscoelastic layers, respectively. The physical
fields at x=1 are displayed in Figures 9 and 10. Note that the time s is measured from
when the faster wave front has arrived. The Poisson ratio and the shear coefficient are set
to n=0·3 and k'=2/3, in accordance with [30], therefore the slower wave front will arrive
at time s1 0·975. Multiple reflection effects have been taken into account by applying the
Green function technique and the reflection relation (5.1) repeatedly. These effects are
present from time s=2; this is the travel time for a fast wave, generated by reflection of
a fast wave at x=−1, to arrive at x=1. Figure 9 displays the influence from the layer
on the shear force and the vertical displacement, respectively. Both plots show the
difference in response due to variation in the properties of the layers, such as damping
effects owing to the viscous parts.

The arrival of the shear wave at time s1 0·975, is clearly visible in both plots. In the
case of a vanishing layer, the change of shape in the shear force depends only on dispersion.
The major part of the response due to multiple reflection appears from time s1 4·925; this
is the travel time for a slow wave, generated by reflection of a slow wave at x=−1, to
arrive at x=1. In Figure 10, the bending moment and the rotation angle are shown for
the three cases. These results show reflection effects, similar to those discussed above,

Figure 9. (a) Shear force Q(1, s); (b) vertical displacement u(1, s). Key: I, ki =0, Ki =0; II, ki =20, Ki =0;
III, ki =20, Ki =−20 e−s.
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Figure 10. (a) Bending moment M (1, s); (b) Rotation angle c (1, s). Key as for Figure 9.

related to the properties of the different layers. In this case the major part of the response
due to multiple reflection appears from time s=2.

Another example is the degenerate case when the layer stiffness increases beyond bounds.
By taking k1 very large, i.e. heavily restricting the vertical displacement, total reflection
occurs. The vertical displacement is suppressed and the shear force tends to a pulse of twice
the amplitude of the shear force that is generated by the incoming wave.
For k2 large the rotational angle due to the reflected waves cancel out the rotational angle
due to the right-moving waves: this implies that c(1, s)=0.

11. CONCLUDING REMARKS

The purpose of this work has been to derive the imbedding equations for a general
Timoshenko beam, subjected to the viscoelastic restraints presented in section 2. By solving
the reflection and transmission equations the general direct scattering problem is resolved:
i.e., given the properties of the beam and the viscoelastic suspension, the scattered fields
can be calculated from knowledge of the incident field. This also provides a base for
addressing the inverse problem of reconstructing the viscoelastic layer and/or the beam
parameters from knowledge of the incident and scattered fields.

The advantage of the imbedding formulation is that it casts the scattering problem into
a set of equations that are independent of excitation; the equations express only the
physical reflection and transmission properties of the region of inhomogeneity. This is
fundamental when studying the dependence of direct and inverse solutions on material
properties and symmetries. Another advantage of using time domain methods, with wave
splitting and invariant imbedding, is that the inverse algorithms are explicit and model
independent. In fact, even if only simple exponential memory kernels were employed in
the numerical examples, the theory presented in this paper allows for the use of a wide
class of functions to model the influence of the viscoelastic suspension (equation (2.3)).
Moreover, the use of time domain methods explicitly takes into account the hyperbolicity
of the Timoshenko equation; therefore the representation of discontinuous wave front
behaviour is accurate. This is in contrast to Fourier methods in which Gibb’s phenomenon
inhibits accurate representation of any discontinuity.

The direct scattering problem for a free and homogeneous beam has been covered in
[30]. In [34] the reflection equation is solved numerically for a homogeneous beam resting
on a finite viscoelastic layer. The work in [35] address the inverse problem of obtaining
the influence functions of the viscoelastic suspension in the spatially invariant case.
Reflection equations similar to equation (5.4) with three distinct characteristics are found
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elsewhere in the literature, see [14, 19, 27]. Ayoubi [27] describes both direct and inverse time
domain algorithms for hyperbolic systems of N components. In the two dimensional case,
the reflection equation in [27] corresponds to equation (5.4) in the absence of time dependent
matrices Fi =Mij =0. The same holds for Dougherty [14], where a stratified elastic slab
surrounded by elastic half spaces is studied. In these works, the inverse problem consists of
reconstructing the multiplicative kernels Nij . Dougherty has a slightly different numerical
approach than Ayoubi to the direct problem. In [19] Corones and Sun treat scattering
problems for fluid-saturated porous media. However, the imbedding equations are
distinguished from equations (5.4) and (7.10) by constant kernels Nij and simpler time
dependent kernels.

It is concluded that there is a basis for treating general direct and inverse problems for
scattering on the Timoshenko beam. Moreover, similarity with problems addressed in the
literature gives guidance to future studies of the direct and the various inverse problems
connected to the Timoshenko beam theory.
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APPENDIX A. OPERATORS OF THE WAVE SPLITTING

This appendix gives a brief presentation of the operator representations of the wave
splitting. These representations are treated in [25]. The kernel functions Fi (t) appearing
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in the representations of the eigenvalue operators, presented in Section 3.1, can be
written

F1(t)=
H(t)
c2t

2 s
a

k=1

G(3/2)
k!G(3/2− k)

(−1)k(q+1)−kWk (t/t),

F2(t)=
H(t)
c2t

2 s
a

k=1

G(3/2)
k!G(3/2− k)

(q−1)−kWk (t/t), (A.1)

where H(t) is the Heaviside step function and Wk (j) are integrals of modified Bessel
functions

Wk (j)= 1−k+1
j kIk (j)/j, 1−1

j f(j)=g
j

0

f(j') dj'.

The characteristic time t is defined as

t=(1/2c1)(1− c2
1 /c2

2 )zf2/f1. (A.2)

In order to simplify the numerical treatment, these functions may be expanded in a power
series

Fi (t)=H(t) s
a

k=0

ai,kt2k.

However, for large arguments it is advantageous to represent equation (A.1)
asymptotically, since Wk (j) are of exponential order 1/t. One obtains

Fi (t)1 et/t s
a

k=1

bi,kt−(2k+1)/2.

A recursive scheme for computing the coefficients ai,k and bi,k is indicated in [25].
The transformation matrices P and P−1 can be represented as

−(l2
2 − c−2

1 12
t ) −l1 Sl2 − l1 1

l2
1 − c−2

1 12
t l2 −(Sl1 − l2) −1

G
G

G

K

k

G
G

G

L

l

P=Q
−(l2

2 − c−2
1 12

t ) l1 −(Sl2 − l1) 1
, (A.3)

l2
1 − c−2

1 12
t −l2 Sl1 − l2 −1

1 1 1 1

−l1(1−Ul2
2 ) −l2(1−Ul2

1 ) l1(1−Ul2
2 ) l2(1−Ul2

1 )G
G

G

K

k

G
G

G

L

l

P−1 =
−l1Ul2

2 −l2Ul2
1 l1Ul2

2 l2Ul2
1

. (A.4)

l2
1 − c−2

1 12
t l2

2 − c−2
1 12

t l2
1 − c−2

1 12
t l2

2 − c−2
1 12

t

Q, U and S act as convolution operators

Qf(t)= (Q( · ) ( f( · ))t, Uf(t)= (U( · ) ( f( · ))(t),

Sf(t)= (c1/c2)( f(t)+ (S( · ) ( f( · ))(t)),
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where

Q(t)=
r0c2

4
H(t) g

t/t

0

I0(j) dj, U(t)=
r0c2

2

c1
H(t) sin 0c1t

r0 1,
S(t)=

c1

r0
H(t) g

c1t/r0

0

J1(j)
j

dj.

Here, r0 is the radius of gyration defined by

r0 =zI/A=(c1/c2)zf2/f1.

Further, the operator Q satisfies

2Q(l2
1 − l2

2 )=1.

Formally squaring the eigenvalue operators yields

l2
1 = (1/c2

1 ) 12/1t2 − (1/2r0c2t)−V( · ) ( , l2
2 = (1/c2

2 ) 12/1t2 + (1/2r0c2t)+V( · ) ( ,

where the function V(t) is written

V(t)= (1/r0c2tt)H(t)I2(t/t).

APPENDIX B: PROOF OF INDEPENDENCE

In the process of deriving the imbedding equations, there appear equations consisting
of convolutions with u+ and sums over possible discontinuities. These equations are of the
general form

0=A ( u+ + s
n

k=0

Bk (x)u+(x, s− dk ). (B.1)

It is argued in sections 5 and 7 that these two terms must vanish separately. In this
appendix it is proved that, for the type of equation in (B.1),

A(x, s)=0 [sq 0, Bk (x)=0 k=0, 1, . . . , n. (B.2)

In order to conclude the main proof, a lemma is needed.

B.1. 

The solutions to the equation

g
s

dk

a(x, s')u+
i (x, s− s') ds'+ bk (x)u+

i (x, s− dk )=0, (B.3)

are

g
s

dk

a(x, s')u+
i (x, s− s') ds'=0, bk (x)=0.

Proof
With the supremum norm defined on a closed interval

>f(x, · )>[0,s]
a = sup

s'$[0, s]
=f(x, s')=,
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for fixed s, using (B.3) and the causality of u+
i (x, s),

>bk (x)u+
i (x, · )>[0,s]

a = =bk (x)= >u+
i (x, · )>[0,s]

a = sup
s'$[0,s]

= g
s'

dk

a(x, s0)u+
i (x, s'− s0) ds0=

E (s− dk )>a(x, · )>[0,s]
a >u+

i (x, · )>[0,s]
a .

Therefore

=bk (x)=E (s− dk )>a(x, · )>[0,s]
a .

Finally let s:d+
k , which implies that bk (x)=0 and the lemma follows. q

B.2.   

Under the conditions
1. the curves of discontinuity emanate from (x, s)= (1, 0);
2. the curves of discontinuity never intersect: d0 =0Q d1(x)Q · · ·Q dn (x) [x$[0, 1);
3. there is only a finite number of discontinuities,

equation (B.1) has the solutions stated in (B.2).
Proof

The split fields u+
1 and u+

2 are independent, therefore equation (B.1) reduces to four
independent scalar equations of the type

0= (a(x, · ) ( u+
i (x, · ))(s)+ s

n

k=0

bk (x)u+
i (x, s− dk ). (B.4)

Let 0Q sQ d1. Then, by causality u+
i (x, s− dk )=0 [ke 1,

g
sQ d1

d0 =0

a(x, s')u+
i (x, s− s') ds'+ b0(x)u+

i (x, s)=0.

By the lemma

a ( u+
i =0 0Q sQ d1, b0(x)=0. (B.5)

Let 0Q sQ d2. Then, by causality u+
i (x, s− dk )=0 [ke 2 and (B.5),

g
sQ d2

d1

a(x, s')u+
i (x, s− s') ds'+ b1(x)u+

i (x, s− d1)=0.

By the lemma again

a ( u+
i =0 0Q sQ d2, b1(x)=0.

By repeating this procedure until k= n it follows that

a ( u+
i =0 sq 0, b1(x)=0 k=0, 1, . . . , n.

Furthermore, Laplace transformation gives

L(a ( u+
i )=L(a)L(u+

i )=0,

and, since u+
i is an arbitrary function,

L(a)=0 c a(x, s)=0.

Thus, the four independent equations constituting (B.1) have independent solutions of the
form given in (B.2). q


